PROGRAMACION Y ROBOTICA

B Software de programacion
B Elementos fisicos
B Elementos de un programa

«Programacion» y «robética» son conceptos que van de la
mano en el estudio de la tecnologia actual. Para compren-
der el concepto de «robot», resulta muy util comparar su
funcionamiento con el de un ser humano.

Asi pues, el cuerpo humano dispone de una unidad central,
que es el cerebro, que se encarga de procesar la infor-
macion que recibe de los 6rganos sensoriales, como 0jos
u oidos, y que envia 6rdenes a otros elementos, como
musculos o cuerdas vocales, para generar una respuesta
determinada. Un robot sustituye el cerebro humano por

un dispositivo microcontrolador, los 6rganos sensoriales
por sensores de diversa indole y los elementos actuadores
por servomotores, timbres, ledes, etc. Hasta aqui la parte
fisica de un robot (hardware).

Sin embargo, todos estos elementos no serian mas que un
amasijo de cables y piezas metalicas incapaces de realizar
accion alguna de no ser por la existencia de una serie de
ordenes o comandos, almacenados en la microcontrola-
dora, a los que llamamos «programa» (software).

Por todo ello, en esta unidad aprenderemos, por un lado,
a conectar los sensores y actuadores a la microcontrola-
dora y, por otro, a disefar un programa que gobierne todos
estos elementos fisicos.

UNIDAD 15. PROGRAMACION Y ROBOTICA

CURIOSIDADES

Etimologia de la palabra «robot»

El término «robot» fue utilizado por primera vez en 1920
por el dramaturgo checoslovaco Karel Capek en su obra R.
U. R. (Rossum’s Universal Robots, Robots Universales Rossum,).
R. U. R. cuenta la historia de un empresario que construye
una fibrica en una isla perdida en medio del océano donde
dedicarse a la construccién de mdquinas disenadas a imagen
y semejanza de los seres humanos con el objetivo de utili-
zarlas como mano de obra barata. Otro personaje dota a los
robots de alma y, finalmente, estos se rebelan y declaran la
guerra a la humanidad. Esta obra se ha llevado en numero-

sas ocasiones al teatro.

:Quién invento este concepto?

Sin embargo, no fue Karel Capek quien invent$ la pala-
bra. En una breve carta escrita a la editorial del Diccionario
Oxford, Karel atribuye a su hermano Josef la creacién del
término. Al parecer, la idea inicial de Karel era bautizar a sus
mdquinas como «/zbofi» (del latin labor, ‘trabajo’) pero cam-
bié de idea tras pedir consejo a su hermano, que le sugirié
designar sus mdquinas como «roboti». La palabra «robota»
significa, literalmente, ‘trabajo’ o ‘labor’ vy, figuradamente,
‘trabajo duro’ en checo y en muchas lenguas eslavas.

OS robots y otras

tecnologias estan

transformando la
sociedad tal y como
la conocemos. Al oir la
palabra «robot» dibuja-
mos en nuestra cabeza
maquinas de aspecto
humano capaces de an-
dar y hablar como no-
sotros. Imaginamos un
futuro en el que los robots limpiaran nuestra casa, cocinaran
nuestra comida y conduciran nuestro coche. La realidad es
que ese futuro ya esta aqui: aspiradores automatizados que
memorizan la forma de nuestros salones, robots de cocina que
realizan el 80 % del trabajo y nos ofrecen consejos, teléfonos
moviles con los que conversamos y a los que ordenamos con
nuestra voz diferentes tareas e, incluso, coches que conducen
por nosotros. Este Ultimo es el caso del coche autonomo de
Google. La combinacién de un computador, diferentes senso-
res y automatismos ha permitido crear un coche que conduce
por si solo: reconoce los carriles, las senales de trafico y los
semaforos; sabe que llega a un cruce; ve a los otros vehiculos,
ciclistas y peatones; controla la distancia de seguridad con
el vehiculo que va delante y toma las decisiones pertinentes
para no sufrir ningtin percance. O sea, o mismo que haria un
conductor responsable y en plenas facultades.

Google Car ya ha recorrido cientos de miles de kilometros, tan-
to en ciudad como en carretera. El estado de Nevada (EE. UU.)
ya ha legislado sobre este tipo de vehiculos, y es, por ahora,
el unico lugar por donde se puede circular con uno de ellos.

7 Actividades

sustituido por un robot.

en el mundo laboral.

a) ¢Crees que los robots pueden suponer un peligro para la humanidad?
b) Identifica en tu entorno algun puesto de trabajo en el que un humano haya sido

¢) Enumera una serie de puntos a favor y en contra de la implantacion de robots

d) Enumera una serie de puntos a favor y en contra de la utilizacion de Google Car.

1> La evolucion de la tecnologia conlleva muchos beneficios, pero también provoca
inquietud. A menudo, vemos en peliculas de ficcion como los robots llegan a desa-
rrollar sentimientos y terminan por rebelarse contra los humanos. Sin llegar tan
lejos, el temor a que los robots evolucionen lo suficiente como para sustituir a las
personas en puestos de trabajo es una realidad. Discute con tu companero o com-
panera sobre este tema y responde a las siguientes preguntas:

377

378

UNIDAD 15. PROGRAMACION Y ROBOTICA

oo ESabias que...?

El vocabulario informatico incluye a
menudo acrénimos procedentes de
expresiones en inglés. Por ejemplo:
IDE: Integrated Development Envi-
ronment, que significa ‘entornos de
desarrollo integrado’.

GUI: Graphical User Interface, cuyo
significado en esparfiol es ‘interfaz
grafica de usuario’.

B 1.Software de programacion

Un programa es una secuencia de 6rdenes que permiten al ordenador la realizacion de las
acciones o tareas correspondientes a dichas 6rdenes. Los programadores o desarrolladores
disenan sus programas utilizando un lenguaje entendible que da como resultado el codigo
fuente. Para que un ordenador pueda entender estas 6rdenes o instrucciones, el programa
debe ser traducido al lenguaje del ordenador, esto es, el lenguaje maquina o codigo binario.

Un software de programacion es el conjunto de herramientas que los desarrolladores
utilizan para crear, depurar, traducir y mantener sus programas y aplicaciones.

Algunas de estas herramientas son:

o Editores de texto. Se emplean para crear o modificar el codigo fuente.

Compiladores. Traducen el cédigo fuente al lenguaje del ordenador para que este pueda
comprender las instrucciones que recibe y actuar basandose en ellas.

Intérpretes. Traducen y ejecutan el programa al instante.

Depuradores. Sirven para controlar el desarrollo del programa. Asi el programador puede
realizar un seguimiento del codigo que se compila y ejecuta.

Entornos de desarrollo integrado (IDE). Agrupan las anteriores herramientas en un entor-
no visual que facilita su manejo, de forma que el programador no necesite introducir mul-
tiples comandos para compilar, interpretar, depurar, cargar el programa para su ejecucion,
etc. Habitualmente, cuentan con una avanzada interfaz grafica de usuario (GUI).

1.1. Programacion de placas controladoras

Existe una gran variedad de IDE para la creacion de programas con los que hacer funcionar los
diferentes tipos de placas controladoras. Algunos ejemplos son los siguientes:

¢ IDE de Arduino. Este programa permite editar y depurar el codigo. Usa un lenguaje propio
basado en el lenguaje de programacion de Processing. Contiene un compilador y un soft-
ware de comunicacion que, mediante conexion USB, permite cargar el programa disefado
en la memoria del controlador. Puede utilizarse con todas las placas controladoras compa-
tibles con Arduino, como, por ejemplo, las placas de BQ.

Crumble. Este software, disefado expresamente para trabajar con el controlador Crumble,
fue creado por Redfern Electronics y es un entorno de programacién gréafico inspirado en
Scratch. Resulta muy sencillo de usar y permite realizar programas de una forma rapida
y eficaz.

e Blink Arduino 182 - oEs 4 Crumble Version 0.26.1 =
Aachivo Bdtar Progiama Hermamientas Ayuda

.'rﬂ

witor €

wait) second

motor €9 €D

motor €3 GLITITY at €T %
[seconds |

.:gg

8

%
L3
5

motor €9 LUTET) at 5D %
mator €3 GLITT o €2 %
- T £D LT

mator @B CEIED at €D %
wator €3 CEEED =t €D %

GIXwy

A {
%i
of°

- 1
set all sparides 1o | | motor €1 €10
- motor €3

:

Fig. 15.1. Interfaz de Arduino. Fig. 15.2. Interfaz de Crumble.

UNibAD 15. PROGRAMACION Y ROBOTICA

379

e S4A (Scratch for Arduino). Es una modificacion de Scratch que, a través de bloques,
permite disefnar programas para Arduino. La placa debe estar conectada mediante un co-
nector USB al ordenador, de manera que el programa se ejecuta sin necesidad de cargarlo
en la placa y, a la vez, se alimenta a través de esta conexion.

¢ Ardublock. Se trata de un entorno de programacion visual por bloques para Arduino que
se instala como una extension del IDE de Arduino y facilita la tarea de redactar las ins-
trucciones.

e Bitbloq. Esta disefiado para programar placas BQ Zum y es compatible con Arduino. Pue-
de descargarse o utilizarse a través de su plataforma on-line. Es similar a Scratch, ya que
permite programar por bloques.

¢ Processing. Es un lenguaje de programacion open source (de codigo abierto), de libre des-
carga y multiplataforma. Estéa pensado para crear programas con imagenes, animaciones
e interacciones entre objetos.

1.2. Diagramas de flujo

Un diagrama de flujo, o flow chart, es la representacion grafica de un proceso o algoritmo.

En un diagrama de flujo, cada instruccion puede ser representada por un simbolo que contie-
ne una breve descripcion de la etapa del proceso. Los simbolos graficos del flujo del proceso
estan unidos entre si mediante flechas que indican el orden de ejecucion.

Los diagramas de flujo utilizan una simbologia normalizada, esto es, unas formas que deben
significar siempre una accion especifica. Los simbolos mas utilizados son los siguientes:

G Il o AW

Terminal Proceso Decision Entrada/Salida

Esperar 10 minutos <
Apagar calefaccion
Si
Temperatura Abrir ventana

Correcta
Fig. 15.3. Diagrama de flujo que representa el control de temperatura de un termostato.

¢Calefaccion QA
inicio

Muy baja

¢Esta la
ventana
abierta?

Encender calefaccion

Cerrar ventana

Si

Antes de empezar a programar y entrar en los detalles del lenguaje de programacion, es muy
recomendable dibujar un diagrama de flujo, como si de un boceto se tratara. Los diagramas
de flujo permiten hacerse una idea de las acciones necesarias y de su relacion con las de-
mas, asi como identificar la existencia de bucles repetitivos, el nimero de pasos del proceso
u otras operaciones que el programa pueda requerir.

@ En Internet

En estas direcciones podras descar-
gar los IDE que se citan en el texto.
e Crumble
https://redfernelectronics.co.uk/

¢ IDE de Arduino
https://www.arduino.cc/

e S4A

http://s4a.cat/

e Ardublock
http://blog.ardublock.com/

e Bitbloq

http://bitblog.ba.com/

e Processing
https://www.processing.org/

@ En Internet

Para crear tus propios diagramas
de flujo con el ordenador, puedes
trabajar con procesadores de texto,
como Word o Writer, que ofrecen
la posibilidad de dibujar flechas y
simbologia propia de estos utilizando
la herramienta integrada de dibujo
Formas. También podemos encontrar
en Internet paginas que permiten
disenar diagramas on-line, como, por
ejemplo, SmartDraw:
https://www.smartdraw.com/

7 Actividades

1> Dibuja un diagrama de flujo que represente:

a) El proceso del sistema de iluminacion que funciona de
manera que la luz solo se enciende durante unos segun-
dos al detectar la presencia de una persona.

b) El funcionamiento de un toldo inteligente cuyo objetivo
es evitar la luz solar directa durante las horas mas calu-
rosas (mas de 20 °C).

380

UNIDAD 15. PROGRAMACION Y ROBOTICA

:Sabi ?
v cSabias que...?

La primera placa Arduino fue inven-
tada en el ano 2005 por un estu-
diante del instituto IVRAE (Instituto
de Diseno Interactivo de Ivrea), de la
provincia italiana de Turin.

Este estudiante, llamado Massimo
Banzi, tenia el objetivo de cubrir una
necesidad de aprendizaje de los estu-
diantes de computacion y electronica
del mismo instituto ya que, por aquel
entonces, adquirir una placa micro-
controladora era relativamente caro.
Banzi pretendia, ademds, evitar la
quiebra de su escuela gracias a las
ganancias que produciria vendien-
do sus placas dentro del campus
al accesible precio de un euro por
unidad.

B 2. Elementos fisicos

La robética es la rama de la tecnologia que estudia el diseno y la construccion de maquinas
capaces de desempenar una tarea de manera automatica. Si esta maquina es capaz de
realizar Unicamente una tarea o una serie de tareas determinadas que no pueden ser modi-
ficadas, se habla de automata. Este seria el caso de un termostato o una tostadora. Pero si
ademas esta maquina puede ser reprogramada para ejecutar otras tareas, se considera que
es un robot.

Un robot es una maquina automéatica y programable que es capaz de captar informacion,
procesarla y actuar en funcion de la decision tomada.

Hoy en dia la frontera entre robot y autémata no esté clara, ya que los autématas han evolu-
cionado mucho y pueden ser programables.

Los componentes de un robot se pueden clasificar en tres grandes grupos:
e Las placas controladoras.
e Los sensores.

e Los actuadores.
2.1. Placas controladoras

La placa controladora es el dispositivo que permite gobernar los sensores y actuadores
de un robot.

Principalmente, una placa controladora se compone de un microprocesador y puertos de
entrada y salida. Utilizando el software de programacion elegido, en el ordenador se disefan
programas que la placa controladora ejecutara.

Las dimensiones de las placas presentan la ventaja de tener un tamano reducido. Se pueden
alimentar a través de un cable USB conectado al ordenador o mediante alimentacion externa.

Hoy en dia se puede encontrar en el mercado muchas versiones y marcas de placas contro-
ladoras que ofrecen una gran variedad de prestaciones con el objetivo de adaptarse a las
necesidades de cada proyecto. Existen placas de diversos tamanos, con mayor o menor me-
moria de almacenamiento, con diferente nimero de entradas y salidas digitales o analdgicas
0, incluso, con conexion Bluetooth. Por otro lado, existe la posibilidad de adquirir tarjetas de
expansion, también llamadas «shields», que se pueden acoplar a placas mas béasicas dotan-
dolas asi de caracteristicas extras.

Una de las placas mas utilizadas en educacion es Arduino, que fue la primera marca italiana
fabricante de placas microcontroladoras.

Fig. 15.4. Placa BQ Zum.

Fig. 15.5. Arduino Nano.

Fig. 15.6. Arduino Shield Bluetooth SHD18.

UNIDAD 15. PROGRAMACION Y ROBOTICA

381

A. Placa Arduino Uno

Las principales partes de una placa Arduino Uno son las siguientes:

Conector USB. Permite transferir
datos del ordenador a la placa. Una \
vez cargado un programa, se puede
desconectar el cable USB y alimentar la
placa con pilas o baterias.

Alimentacion externa. Se ___»
pueden conectar pilas de 6
a 20V a esta entrada y asi
trabajar sin el cable USB.

Pines de potencia. Se

utilizan para alimentar un —)

circuito con +3,3V o +5 V.

Entradas analégicas. Hay seis entradas —_—
analdgicas, que van desde AO hasta A5.

La corriente méxima de salida de cada uno de los pines de Arduino es de 40 mA y 200 mA
para la suma total de los pines. Este es un dato importante a tener en cuenta a la hora de
alimentar los diferentes componentes que se utilicen en el circuito.

Para dar salida a voltajes intermedios, se utilizan pines digitales etiquetados con el simbolo
«~» 0 el acronimo «PWM» («modulacion por anchura de pulso», por sus siglas en inglés). Con
estos pines se puede, por ejemplo, iluminar un led a media potencia.

Los componentes utilizados deberan conectarse a las entradas digitales o analdgicas en fun-
cion del rango de valores que se quiera enviar a un componente o recibir de él:

e Los pines digitales envian o reciben dos unicos valores, que son O y 5 voltios, y que co-
rresponden a los valores l6gicos «LOW», ‘bajo’ y «HIGH», ‘alto’, respectivamente. Con ellos
podemos encender o apagar un led (actuando como pin de salida) o comprobar si un botén
externo esta encendido o apagado (actuando como pin de entrada).

e Los pines analdgicos pueden recibir un rango continuo de voltaje entre O y 5 voltios. Ac-
tdan solo como pines de entrada.

Dado que, a menudo, los pines disponibles en una placa Arduino son insuficientes y que al-
gunos componentes necesitan conectarse en serie con resistencias y el espacio de la placa
es limitado, es muy habitual utilizar una placa de conexiones, también llamada protoboard.

Una placa protoboard permite ampliar las posibilidades de la placa controladora y el circuito
electronico que se quiera construir. Esta placa esta formada por una serie de filas y columnas
de pines conectados entre si en su interior para disponer los elementos que el circuito re-
quiera, en serie 0 en paralelo. Para ello se emplean los jumpers, cables de diferente longitud
provistos de terminaciones conectoras macho para su conexion.

Z Actividades

2> Dibuja una placa protoboard y conecta:
a) Tres resistencias en serie.
b) Tres resistencias en paralelo.

¢) Dos resistencias en paralelo conectadas en serie con una tercera resistencia.

Boton de Reset. Sirve para resetear la placa,
/ es decir, reiniciar el programa que se esta
ejecutando, aunque no borra el programa de la

memoria interna de la placa.

Entradas y salidas digitales. Hay 14
entradas y salidas digitales que van
desde DIGITAL O hasta DIGITAL 13. Se
recomienda evitar los pines O y 1 porque
todo lo que esté conectado a ellos debe
desconectarse cuando se carga un
programa desde el ordenador a la placa.

Led de encendido. Asegura el buen
funcionamiento de la placa; parpadea unos
segundos cada vez que se reinicia la placa
y cuando se carga un programa via USB.

Microcontrolador. En el caso de
Arduino Uno, es ATmega328.

Fig. 15.7. Placa protoboard conectada
a placa microcontroladora mediante
jumpers.

382

UNIDAD 15. PROGRAMACION Y ROBOTICA

@ En Internet

http://www.iearobotics.com

Esta es la wiki de Juan Gonzalez;
en ella puedes encontrar multitud
de actividades, informacién ampliada
y videotutoriales creados por él
mismo.

Fig. 15.8. Placa IceZUM Alhambra.

B. FPGA libres

Una FPGA o matriz de puertas programables (del inglés Field Programmable Gate Array) es
un dispositivo 16gico programable, es decir, un chip cuyas puertas l6gicas se pueden progra-
mar. Asi pues, la interconexion y la funcionalidad de los bloques légicos pueden ser configu-
radas, de manera que no se modifica una capa de software, como pasa en Arduino, sino el
hardware del dispositivo.

El llamado formato bitstream de una FPGA especifica define como estan conectados los ele-
mentos internos de una FPGA y cémo interactian entre ellos. Las empresas que fabrican
y venden FPGA no suelen hacer publico este formato para proteger su producto y asegurar
las ventas; sin embargo, este hecho supone a su vez una barrera a su acceso y desarro-
llo para muchos usuarios. Asi pues, las FPGA se consideraban dispositivos privativos o cerra-
dos, ya que, para trabajar con ellas, resultaba necesario utilizar las herramientas que proveia
una empresa en particular.

Sin embargo, en diciembre de 2015, el desarrollador Clifford Wolf, presentd el resultado de
su proyecto Icestorm, una serie de herramientas libres (open source toolchain) para el desa-
rrollo de una FPGA modelo iCE40. El trabajo de tres anos llevado a cabo por el equipo de Wolf
liberd el disefo y el método de programacion de la placa iCE40 y abrid la veda de programa-
cion de las FPGA. Desde entonces se puede hablar de FPGA libres. Este hito ha supuesto toda
una revolucion en el mundo de la robdtica, ya que las FPGA se utilizan en multitud de campos,
que van desde la industria de fabricacion mecanizada hasta la industria aeroespacial, pasan-
do por la industria de impresoras 3D o las aplicaciones de robética simple.

Como consecuencia de estos avances, ha sido posible crear placas con FPGA libres y progra-
mables utilizando tnicamente software libre. Este es el caso de la placa IceZUM Alhambra,
desarrollada originalmente en BQlabs y disenada por Eladio Delgado, en colaboracion con
Juan Gonzalez. El software libre Icestudio, creacion de Jesus Arroyo, permite, ademas, pro-
gramar esta placa de manera directa y grafica, facilitando asi a los estudiantes la introduc-
cion a la electronica digital.

= Multiplexor 21_led - Icestudio - oIEN
File~ Edit~ View~ Select~ Tools~ Help~ Basic» Bt~ Logic~ Setup ~
View license
Version 0.3.0
Documentation
Source code
Mux 2:1 implementado con puerta ligices.
EL LEOR parcades o se enciende con el ouls
Community forum
—5 r About Icestudio
Fushbutton MI —> TP
SWI % e | L)
||Sefial pora hacer parpadesl el led] - y
| > -
= LED

Project Multiplexer 21_led saved

Multiplexor 21_led lceZUr Alhambra

Fig. 15.9. Software Icestudio.

Actividades

3> Accede a la wiki de Juan Gonzélez y busca informacion sobre «Mini-Pl». Enumera sus
componentes, describe su utilidad y explica qué caracteristicas la diferencian de la
placa controladora BQ Zum.

UNIDAD 15. PROGRAMACION Y ROBOTICA

383

2.2. Sensores

Un sensor es un dispositivo que permite captar informacion del entorno. Los sensores

son los 6rganos sensoriales de un robot.

Los sensores pueden ser muy variados: de temperatura, de humedad, de movimiento, de
presencia, de intensidad luminosa, de distancia, de presion, de inclinacion, etc.

Tipo de sensor ‘

Sensor PIR (passive infrared) o
de movimiento

Caracteristicas

Es sensible al cambio en la radia-
cion de infrarrojos de objetos o
personas.

Sensor LDR (light dependent
resistor)

Varia su resistencia interna en fun-
cion de la cantidad de luz.

Sensor de ultrasonidos

Calcula la distancia a la que esta un
objeto mediante ondas de ultraso-
nidos.

Sensor de infrarrojos

Diferencia entre blanco y negro en
funcion de la luz reflejada por el
objeto.

Sensor NTC (negative tempe-
rature coefficient) o de tempe-
ratura

Varia su resistencia interna en fun-
cion de la temperatura.

Sensor de sonidos

Detecta sonidos. También puede
emitir sonidos actuando como un
timbre o zumbador.

Sensor de humedad

Detecta la cantidad de humedad
existente en el aire del medio en que
se encuentra.

Acelerometro o sensor de
inclinacion

Registra la orientacion de un objeto,
golpes o vibraciones, aceleraciones
y la variacion de gravedad.

Pulsador

Son botones con los que iniciar o
parar una accion.

Potenciometro

Es una resistencia variable que se
puede modificar al hacer girar el
mando de que viene provisto.

'sigg_

Tabla 15.1. Tipos de sensores.

Vo ¢Sabias que...?

El robot siguelineas es uno de los
robots mas sencillos de construir
y su comportamiento resulta muy
sorprendente. Este robot, provisto de
motores y ruedas, se coloca sobre
una superficie blanca con una linea
dibujada de color negro (o viceversa)
y, gracias a los sensores de que
dispone, es capaz de detectar si esta
encima de la linea o no. En funcién
de esta informacion, hace que los
motores giren en un sentido u otro
con el objetivo de corregir la tra-
yectoria y nunca salirse del camino
indicado por la linea.

Fig. 15.10. Sensor LDR de BQ.

Estos sensores se conectan a una placa protoboard. Algunos fabricantes como BQ integran
los sensores a un pequeno soporte al que también van soldados los cables necesarios.

Actividades

4> ;Cudles crees que son los sensores necesarios para construir un robot siguelineas?

384

UNIDAD 15. PROGRAMACION Y ROBOTICA

Vce

oy |
Lt |

1K

) PWM
Arduino

Fig. 15.11. Circuito con amplificador
para alimentar un motor de CC con
placa Arduino.

2.3. Actuadores

Un actuador es un dispositivo capaz de transformar la energia eléctrica en la activacion
de un proceso con la finalidad de generar luz, sonido, etc. Los actuadores reciben 6rde-
nes del controlador y actian en consecuencia.

Los actuadores mas utilizados son motores, indicadores luminosos (diodos), zumbadores,
pantallas LCD o displays numéricos. La mayoria pueden alimentarse con la corriente méaxima
de salida de los pines digitales de Arduino, que es de 40 mA, pero conviene recordar que la
corriente maxima total de la placa es de 200 mA.

Por otro lado, algunos actuadores requieren drivers (controladores) adicionales.

Tipo de actuador ‘

Los diodos LED
(light emitting
diode)

Caracteristicas

Transforman la electricidad en luz. Tienen pola-
ridad, por lo que hay que prestar atencion al
conectarlos. De sus dos patas, la mas larga es
el anodo, o terminal positivo, y la mas corta, el
catodo, o terminal negativo. Se deben conectar
en serie con una resistencia de aproximada-
mente 220 €2 para que puedan soportar la
corriente.

Figura

aazan
i

R

Motores de
corriente continua

Transforman la energia eléctrica en mecanica,
de manera que el motor girara en un sentido u
otro en funcion de la polaridad. En el caso de la
placa Arduino, requieren una corriente superior a
40 mA para funcionar, por lo que sera necesario
acoplar una «shield» o tarjeta de expansion para
amplificar la salida de Arduino con un transistor
o conectar un relé que accione el motor.

Servomotores

Son motores CC de precision que contienen

una reductora y permiten que gire de 0° a 180°
tomando cualquier posicion intermedia. Por
ejemplo, para que un motor abra y cierre una
compuerta, se puede programar de manera que
para abrirla vaya de la posicion 0° a la posicion
100° y para cerrarla, de 100° a 0°.

Zumbadores o
buzzers

Son dispositivos piezoeléctricos que emiten
sonido. Se puede controlar el tiempo de duracion
del sonido y también el tono que reproducen.

Tabla 15.2. Tipos de actuadores.

Z Actividades

5> Completa la tabla siguiente indicando a qué entradas y salidas conectarias los siguien-
tes sensores y actuadores:

LED Servomotor
Sensor de tem- Zumbador o
peratura NTC buzzer

Sensor LDR

Sensor de ultra-
sonidos

Sensor de infra-
rrojos

Motor CC

UNIDAD 15. PROGRAMACION Y ROBOTICA

385

A. Divisores de tension

Un divisor de tension o de voltaje es un circuito cuyos componentes eléctricos estan
configurados de manera que la tension o voltaje de una fuente se reparte entre una o
mas resistencias conectadas en serie.

Los divisores de tension tienen gran cantidad de aplicaciones y se encuentran entre los cir-
cuitos mas utilizados en electricidad y electronica.

Para calcular la caida de voltaje en cada una de las resistencias del circuito que se muestra
en la figura, se aplica la ley de Ohm y otras férmulas béasicas de electricidad.

e Se calcula el valor de la resistencia total o equivalente:
R,=R,+R,

e Se aplica la ley de Ohm para obtener las expresiones de V.. y V_, que corresponden a la

caida de tension en R, y R, respectivamente:
Vout: - R
Vin: |- RT =1- (R1+ RZ)’ de donde | = Vin/(R1+ R2)

donde | es la corriente que circula por el circuito, V_,, el voltaje que se quiere encontrar, y
R,, el valor de la resistencia que provoca la caida de tension.

out

2

e Se obtiene la férmula final:
Vout = Vin ’ RQ/(Rl + Rz)

Dado que para una placa Arduino es muy sencillo medir voltajes, gracias a su convertidor
analdgico-digital, el divisor de voltaje es ampliamente utilizado para facilitar la medicion de
datos obtenidos desde ciertos sensores, que son, en realidad, resistencias cuyo valor varia
de acuerdo con ciertas magnitudes, como la luz, el ruido, etc. Esto se consigue agregando en
serie a la resistencia variable (sensor) otra resistencia fija, formando asi un divisor de voltaje.
A medida que la resistencia variable cambia su valor, el valor del voltaje de salida V_, ira tam-
bién variando, permitiendo al microcontrolador establecer lecturas segun el voltaje recibido.

Este es el caso del ejemplo mostrado en la figura 15.13, en el que la resistencia del LDR
disminuye con el aumento de luminosidad. Al hacerlo, el punto en el cual se mide el voltaje
aumenta.

P> Ejemplo 1

Veamos como ejemplo lo que ocurre en un potenciometro. Este elemento consiste en una
resistencia y un contacto mévil que divide la resistencia en dos méas pequenas y, a medida
que varia su posicion, modifica el valor resistivo de cada una de ellas.

En la figura siguiente variaremos la lectura de un potenciémetro cuyos pines extremos
estén polarizados a 5 V. Por lo tanto, la lectura que hagamos desde el pin AO tendra un
valor entre O y 5V, dependiendo de si el contacto se desliza a la izquierda o a la derecha.

Las lecturas que hagamos en las entradas analdgicas daran valores entre O y 1023,
correspondiendo el valor O a una lectura de O V y el valor 1023 a una lectura de 5 V. Por
ejemplo, una lectura de 512 corresponde a 2,5 V.

Lectura mayor voltaje €——— | ——> Lectura menor voltaje

Vin

R1

Vout

Rz

Fig. 15.12. Esquema de un divisor de

voltaje.
v
10 K Ohm
Gnd Analog Pin O

Fig. 15.13. Esquema de un divisor de
voltaje para un sensor LDR.

386

UNIDAD 15. PROGRAMACION Y ROBOTICA

v+ £Sabias que...?

El codigo ASCII es el codigo fuente
del texto desarrollado en un
guaje de programacion. Gracias a
este cddigo es posible representar
caracteres alfanuméricos y facilitar
la comunicacion entre los diferentes
dispositivos digitales. A continua-
cién, puedes ver la conversion de
algunos caracteres a codigo binario

utilizando el citado cédigo.
Codigo ASCII

o
[y
=
o

O W ~NOoU D WN R~ O
I
OO0 o000 OO0 O oo
OO0 o000 oo oo
[e e e
N = I = N = S T S oY
HHOOOOOOoOO
OO KRR EFEEHEHOOOO

oD QA HEOQD P
I
cOcoocoooooo
OO0 ocoooooo
[N e e
= N =W =Ty =
H OO0 Oooo oo
O HR R OOO

OO KHFH OORKr K OO

O OORKF KK~ O

H O OOk ORFr O+ O

OO O O oR

len-

B 3. Elementos de un programa

Son los términos y simbolos utilizados para redactar los programas. Resulta muy dtil ima-
ginar cada uno de ellos como una pieza de puzle que encaja con el resto; de hecho, asi se
representan en programas como Scratch, S4A o Bitbloq, que utilizan bloques de diferentes
colores en funcion de su utilidad.

En los apartados que siguen se exponen los elementos mas relevantes.

3.1. Tipos de datos

Los tipos de datos o variables son las unidades de informacion que el programa procesara.
Para que el programa sepa como tratar cada variable, el nombre de la variable ird precedido
por una abreviatura que determinaré su tipo y el rango de valores que puede almacenar. A
este identificador le sigue un valor, que es el contenido de ese dato o variable.

Algunos tipos de datos son:

¢ Numeéricos: trabajan con magnitudes numéricas de nimeros reales, enteros, decimales,
etc.

e Caracteres 0 cadenas: representan caracteres, como numeros, letras o simbolos. Las
cadenas son caracteres concatenados con los que dar forma a palabras o frases.

¢ Booleanos: solo admiten dos valores: verdadero/falso, si/no, 1/0, etc.

¢ Punteros: senalan la direccion de memoria de otra variable.

¢ Tablas: estdan compuestas por filas y columnas.

¢ Listas o colas: estan compuestas por elementos lineales enlazados.

« Arboles o grafos: estan compuestos por elementos no lineales enlazados.

¢ Ficheros de bases de datos: son archivos que contienen numerosos registros.

Asi pues, por un lado, existen las variables, que, como su propio nombre indica, pueden
cambiar su valor durante la ejecucion del programa, y, por otro, las constantes, cuyo valor
permanece fijo todo el tiempo.

Tipo ‘ Descripcion ‘ Ejemplo

B Almacenan un nimero entero entre O y 255. Codificado en un bute mi _ 1og.
Y octeto (1 byte). yte minumero = K

Integer = Entero
int Almacenan un nimero entero entre 32767 y -32767. int unentero = 28927;
Codificado en dos octetos (2 bytes).

Almacenan un nimero entero entre 2147483647 y

long —2147483647. long unenterolargo = 67876;
Codificado en cuatro octetos (4 bytes).

float Almacenan un nuimero real, es decir, con decimales. float numerodecimal = 3,56;
Almacenan una variable booleana que puede tomar solamente | boolean

boolean . . .
dos valores: 1 0 0. mibooleano = true;
Un caracter ASCIl almacenado en 8 bits (1 byte). Permite alma-

char cenar caracteres como valores numeéricos (su c6digo ASCII char micaracter = ‘a’;
asociado). El codigo ASCII para el caracter ‘a’ es 97; si se le char micaracter = 97;
anaden tres se obtiene el codigo ASCII del caracter ‘d’.

array Sirve para almacenar colecciones de diferentes tipos de datos. | int misnumeros = (1, 2, 3, 4};

string Es un array de tipo char. char micadena = “hola”;

Tabla 15.3. Tipos de datos.

UnipAD 15. PROGRAMACION Y ROBOTICA 387

3.2. Operadores

Los operadores son los simbolos que permiten realizar operaciones aritméticas, logicas o
relacionales entre los datos con que se trabaja. Existen distintos tipos de operadores:

¢ Los operadores aritméticos sirven para trabajar con términos numéricos como si de ope-
raciones matematicas se tratara. En ellos es importante prestar atencién al uso de parén-
tesis y asi asegurar que el resultado obtenido es el deseado. Por ejemplo: “8 Recuerda

Conviene tener cuidado de no causar
IF (cantidad de luz <= 300) THEN (acci6n encender led) overflow con las operaciones, es
decir, debemos evitar que la magni-

) By o) tud del resultado de una operacion
Por otro lado, existen operadores cuya funcion es aumentar o disminuir en una unidad sea mayor a la que el tipo de varia-

cierto valor almacenado en una variable para asi conseguir estructuras que en programa- ble asociado pueda contener. Por
cion se denominan contadores. Por ejemplo: ejemplo, el nimero mas grande que
puede tolerar un entero en Arduino

va de -32768 a 32767, por lo tanto,
WHILE (variable tiempo <30) DO (variable tiempo ++) si intento multiplicar 60 x 1000,

produciré un error por overflow en el
programa.

¢ Los operadores légicos o booleanos permiten conectar varias propiedades de manera que
deban cumplirse ambas (AND), solo una de ellas o alguna de ellas (OR) o ninguna de las
condiciones descritas (NOT). Por ejemplo, para que se cumplan dos condiciones a la vez
se escribe:

IF (condicion 1) AND (condicion 2) THEN DO (accion)

¢ Los operadores relacionales se utilizan para comparar dos valores y podemos determinar
si se quiere que los dos valores sean iguales, distintos, mayores, menores, mayores que
o iguales que una determinada variable o constante.

Descripcion Tipo de operacion
= Asigna un valor. Aritmética (de asignacion)
+,5 %,/ Adicion, sustraccion, multiplicacion, division. Aritmética
% Mdédulo. Devuelve el resto de una division. Aritmética
4+, - Incrementa, decrementa el valor de una variable. Aritmética
==, F=, /: X +=y es equivalente a x = x + y. Relacional
== = <> Igual, distinto, distinto. Relacional
<, <=, >=, > Menor, menor o igual, mayor o igual, mayor. Relacional
i, NOT Negacion. Booleana
&&, AND Producto I6gico o conjuncién. Booleana
||, OR Suma légica o disyuncion. Booleana

Tabla 15.4. Tipos de operadores.

7 Actividades
6> Utiliza los simbolos de los operadores para escribir la ¢) Hacer que una variable sea mayor o igual que 8 o menor
expresion que corresponderia a las siguientes operaciones: o igual que 1.
a) lgualar una variable a 5. d) Definir una variable de tipo ndmero entero llamada
b) Hacer que una variable sea menor que 7 y mayor o igual «pasos» y asignarle el valor 53.
que 12. e) Definir una variable para almacenar la palabra «Saca-
puntas».

388

UNIDAD 15. PROGRAMACION Y ROBOTICA

Instruccion 1

¢

Instruccion 2

¢
|

Instruccion N

Fig. 15.14. Estructura secuencial.

No

Condicién

Instruccion 1

/

Instruccion 2

/

Instruccion 3

Fig. 15.15. Estructura repetitiva.

3.3. Funciones y programacion estructurada

La programacioén estructurada se basa en una metodologia de programacion de refinamien-
tos sucesivos. Se plantea una operacion como un todo y se divide en segmentos de menor
complejidad. La programacion estructurada hace posible que, combinando esquemas senci-
llos, se pueda llegar a construir sistemas amplios y complejos, pero de facil entendimiento,
pues evita codigos largos y repetitivos.

Para la representacion grafica de la programacion estructurada se utilizan diagramas de flujo,
o flow charts, que representan el programa con sus entradas, procesos y salidas.

La programacion estructurada propone segregar los procesos en estructuras lo mas simples
posible con la ayuda de las siguientes instrucciones de control:

Secuenciales: son bloques de instrucciones sucesivas que se ejecutan de forma ordena-
da y seguida.

Condicionales o selectivas: son instrucciones que permiten definir condiciones. Depen-
diendo de si una condicién se cumple o no, el programa seguird por un camino u otro. Por
ejemplo:

If (condicion) then (instruccion 1) else (instruccion 2)

que podria traducirse como «Si se cumple la condicién, ejecuta la instruccion 1; en caso
contrario, ejecuta la instruccion 2».

Cuando en una estructura condicional solo una de las dos respuestas da lugar a una serie
de acciones, se trata de una estructura condicional simple. En cambio, si ocurre que se
concatenan varias estructuras condicionales y de una condicion surgen varios caminos
0 respuestas con una serie de acciones correspondientes a cada una de las respuestas
posibles, se obtienen las llamadas estructuras condicionales multiples.

Repetitivas o de iteracion: son instrucciones que se repiten un nimero limitado de veces
0 hasta que se cumple una condicion definida. Se utilizan los bucles for y while. Son
bucles (en inglés, loop), porque estas instrucciones hacen que lo que contienen se repita
una y otra vez. Por ejemplo:

While (condicion) do (instruccion)

que significa «Mientras se cumpla esta condicion, ejecuta (haz) esta instruccion».

A continuacion, se muestran los diagrames de flujo correspondientes a estructuras condicio-
nales simples y mdltiples.

Si No
Condicion
Y Y \J
Instruccién 1 Instruccion 1 Instruccion 1 Instruccion 1
Instruccion 2 Instruccion 2 Instruccion 2 Instruccion 2
Instruccién 3 Instruccion 3 Instruccion 3 Instruccion 3

v

Fig. 15.16. Estructura condicional simple. Fig. 15.17. Estructura condicional multiple.

UNibAD 15. PROGRAMACION Y ROBOTICA

389

A. Elementos de control

Son las estructuras que permiten dar forma al programa, asi como modificar el flujo de eje-
cucion de las instrucciones que contiene. Combinando los elementos de control se pueden
conseguir diferentes y diversos comportamientos, como ejecutar un grupo de sentencias
mientras se cumpla una condicion o hasta que se cumpla una condicién determinada, ejecu-
tar un grupo de sentencias en funcion del valor de una variable, etc.

Tipo ‘ Descripcion Ejemplo
Se utiliza para probar si una deter-
minada condicién se ha alcanzado. if (alguna Variable > 50)
. Si es asi, se ejecutaran una serie {
if : . S .
de operaciones. Si la condicién no // do una operacién
se cumple, el programa saltarayno | }
ejecutara las operaciones.
if (valor_ pin3 < 500)
{
. i6nA
«Si esto no se cumple, haz esto }// do Operacion
otro». Se diferencia del «if» en que, else if (pinFiveInput >= 1000)
e en caso de que no se cumpla la {
condicion, el programa no salta, .
.) : // do OperacidénB
sino que ejecuta otra serie de ope- }
raciones.
else
// do OperaciénC
}
int pulsador = 12; // Se definen dos variables, una para el pulsador y
int led= 4: ! otra para el led; se llamaran pulsador y led, respec-
int is ! tivamente; «i» sera el indice utilizado en las repeti-
! ciones y, de momento, no se le asigna ningun valor.
void setup()
{ // Se definen si dichas variables seran de entrada o
pinMode(pulsador, INPUT); salida. El pin conectado al pulsador sera de entrada
pinMode(led, OUTPUT); y el del led sera de salida.
}
Se utiliza cuando se requiere que
i i i void loo
z3?nz‘rac:lzgtzran:icr:gr(]iisdzev;eczzag:rr; { p() //Al pulsar el botén, el pin digital recibira el valor
ello se necesita una variable indice, if (digitalRead(pulsador) == HIGH) HIGH y ejecutara todas las operaciones contenidas
for P . en el bucle for.
una condicién y un incrementador. {
j i for (int i = 0; i<=2; i++
:ir:je;aerjs;;glgSE:SZSAQSUS;USUUIQW ((! !) //Se asigna a la variable «i» el valor O y se esta-
un botén digitalWrite(led, HIGH); blece la condicion de que siempre que el valor de «i»
’ delay(1000); ! ! sea menor que 2 el programa haré dos cosas:
digitalWrit,e(led LOW); 1) Aumentara el valor de la variable «i» en uno (i++)
delay(1000); ! ! 2) Ejecutara el c6digo entre llaves "{..}". Asi pues,
} ! las acciones descritas después ejecutaran el
} encendiendo del led durante un segundo y el apa-
else gado, durante otro segundo.
{digitalWrite(led LOW) //En caso de que el pin del pulsador no reciba la
! entrada HIGH, es decir, que no se haya pulsado el
} qQ yap
} botdn, el LED se mantendra apagado.
Es un bucle que se ejecutara con-
tinuamente mientras se cumpla la while(expresion){
while expresion entre paréntesis. La varia- // acciones
ble de prueba debera cambiar para }
que el programa salga del bucle.
. . var = 0;
Funciona como el bucle wh_ﬂgi con while(var < 200){
. la salvedad de que la condicion se . .
do... while) // ejecuta una accién 200 veces
prueba al final, por lo que el bucle varit:
se ejecutara al menos una vez. } !

Tabla 15.5. Elementos de control.

390

UNIDAD 15. PROGRAMACION Y ROBOTICA

servo_potenciometro

#include <Servo.h>
Servo Servouno; //Declaramos

int pot = 0;
int val;

//Rsignamos la
//Variable para
int ang; //Variable para al
void setup()

{

Fig. 15.18. Cabecera de un programa
con la libreria servo.

3.4. Librerias

El IDE de Arduino puede utilizar funciones propias y funciones importadas. Las funciones
importadas son aquellas que el programa no reconoce por defecto. Para que sea capaz de
hacerlo se tienen que instalar librerias adicionales. Estas librerias permiten utilizar funciones
especificas para manejar elementos como, por ejemplo, un servomotor. En la actualidad su
instalacion es sencilla.

Las librerias son fragmentos de cédigo creados por terceros que se pueden incluir en el
programa. Existen infinidad de librerias a disposicion de los usuarios. Todas ellas son open
source (de codigo abierto) y, por ello, se puede utilizar su c6digo.

Las librerias, normalmente, incluyen una serie de archivos comprimidos en un archivo .zip o
dentro de un directorio en el que se encuentra:

¢ Archivo de extension .cpp, que contiene el codigo fuente de la libreria.

¢ Archivo de extension .h, que contiene las propiedades de las funciones de la libreria.
Archivo «Keywords.txt», que contiene las palabras clave que se resaltan en el IDE.

e Archivo «readme», con informacion adicional e instrucciones de como usar las funciones.

e Directorio «examples», con varios programas ejemplo que ayudan a entender como usar
la libreria (opcional).

A. ¢Como instalar librerias?

La manera mas sencilla de instalar librerias es utilizar el gestor de librerias del IDE de Arduino
disponible a partir de su version 1.6.2. Esta herramienta se puede utilizar accediendo a:

Programa — Incluir Libreria — Gestionar Librerias

Desde aqui se pueden ver las librerias instaladas, buscar entre las librerias disponibles, insta-
lar nuevas librerias y también actualizarlas. Si se clica sobre la libreria «Servo», por ejemplo,
aparecera automaticamente en la cabecera del programa la funcién «include» con el nombre
de la libreria instalada.

También se puede importar librerias descargadas previamente como un archivo .zip accedien-
do a:

Programa — Incluir Libreria — Anadir Libreria .ZIP

=<} pantalla_Lcp Arduine 182 — O HEM
Archiva Editar h!\gqum; Herramientas Ayuda
] Verificar/Compiar Cirl+R -
Subsr Cirl+l

Subsr Usando Programadar Ctrl+Mayiz=U
Expaortar Binarios compilados Ctrl+Alt+S

-

Mostrar Carpets die Programa Cirl+K
Inchuir Libreris) -

1
Anadir fichera_ i.mm
Firmata

HID

Keybosrd

Mouse

Robot Control
Robot IR Remate
Robot Motor

SoftwareSeral
Spacebrew'un
Temboo

Wire
Recommended bbre

Adafruit Cireuit Playgrour

Contriouted librerias

hils (valssLOR<E00) [/ /E

. Eeerames om sl buels cuaede W M

LiquidCrystal
Stepper

TFT
WiF

Fig. 15.19. Opcion Gestionar Libreria.

- clEM

o] pantalla_LCD Arduing 1.8.2
Archivo Editer Progrema Herramientas Ayuca

1 Vigrificar/Connpilar Ctrd+R
ey O cuta
— Subir Usando Programadar Ctrl+Maytiss Ul

Exportar Binarios compilados Ctr+Alt+S
Mostrar Carpats de Programa Ctrd+K
Inchuir Libreria *

Adiacl fic Gestionar Librerias

Afachs Blaeia 2IP...
led{12, 11, 5, 4 3, 2)i//Declazancs lo
Arduing Fbrerix
Bridge
EEPROM
Esplora
Ethemat
Firmats
HID
Keyboard
Mouse
Robet Control
Rabot IR Rermate
Robet Mators
50
5P
Senvo
SoftwareSerial
Spacebrewtun
Temboo

lod.
led,
lod.

t [contador
numauc=0; / fhacenos la variable

while{valorLDR<600) {//Entramnos en el bucl
T

Fig. 15.20. Opcion Incluir Libreria.

UnipAD 15. PROGRAMACION Y ROBOTICA 391

Practica 1. Instalacion del IDE de Arduino y conexion de la placa Arduino Uno
al ordenador

La primera vez que conectemos la placa Arduino a nuestro ordenador, deberemos instalar el IDE para que la placa sea reconocida
y funcione correctamente. Estos son los pasos a seguir:

1. Descargar el IDE de Arduino desde la seccion de descargas de www.arduino.cc e instalarlo.
2. Conectar la placa via USB y seleccionar la opcion «Instalar automaticamente el software» o esperar a que se instale automati-
camente.

3. Abrir el IDE de Arduino e indicar qué placa vamos a utilizar y el puerto al que esta conectada. Sabemos a qué puerto esta co-
nectada porque es el que se indica automaticamente al acceder a Herramientas > Puerto COM. Una vez seleccionado el puerto
correcto, aparecera un simbolo de check a su lado y podremos leer en la parte inferior derecha de la ventana el tipo de placa

y nuimero de puerto seleccionados.

Cada vez que abramos el programa y conectemos la placa, debemos comprobar que el puerto seleccionado es el correcto.

Botones y areas principales de la interfaz del IDE de Arduino

Menii principal con acceso a : o B
las pestanas Archivo, Editar, semaforo Arduino 1.8.2 - -
Programa, Herramientas y Archivo Editar Programa Herramientas Ayuda
Ayuda. Boton Puerto serie. Abrira una

ventana que mostrara datos

Botoén Verificar. Comprueba si recibidos de la placa.

existe algun error de sintaxis.

Boton Subir. Al pulsarlo, el pro-
grama se compilara y seguida-
mente se cargara en la placa.

ode (red, OUTPUT);
(yellow, OUTPUT) ;
Boton Nuevo. Para comenzar e (green, OUTPUT);
un nuevo programa.
void loop () { 3
Boton Abrir. Para abrir un pro-)) —rArea del Editor de texiq. (?on
grama guardado anteriormente. // apagar verde, enC}evnde amarillo 3 segundos fondo blanco, fss el espamo
e talWrite (green, LOW); donde se escriben las ins-
digitalWrite (yellow, HIGH); trucciones que dan forma al
delay(3000); programa.

Boton Salvar. Para salvar el

programa con el que se esta , , ,
// apagar amarillo, enciende rojo 5 segundos

i ol rite(yellow, LOW);
alWrite (red, HIGH);
jelay (5000) ;

— Area de Consola. Con fondo
negro, es el espacio que el
programa utiliza para mostrar
— mensajes que informan de si
el programa esta bien escrito
o hay algun error, de si la pla-
ca esta bien conectada, etc.

7 Actividades

7> Analiza los simbolos utilizados en la redaccion del codigo que se muestra en la imagen de esta pagina (punto y coma,
paréntesis, barra diagonal, llave...) y describe cual crees que es su cometido y sus caracteristicas de sintaxis. De la misma
manera, se puede apreciar que el programa asigna diferentes colores a palabras especificas. Investiga en Internet y explica

el uso de este codigo de colores.

392 UNIDAD 15. PROGRAMACION Y ROBOTICA

Practica 2. Compilar y cargar un programa en la placa

Para compilar y cargar el primer programa, abriremos uno ya o Blink Arduino 152 - olEl
escrito desde la base de datos de ejemplos del propio IDE de Archivo Editr Programa Herramientos Ayuda
i o0 EmEa =
Arduino.] =
1. Accede a Archivo > Ejemplos > 0.1 Basics > Blink poe B e 6
Se cargara un programa que hace parpadear un led. by Arvare Guadatuet

modified 8 Sep 2016
by Colby Newman
*/

// the setup function runs once when you press reset or power the board
01
// initialize digital pin LED_BUILTIN as an output.
(,)i
}

// the function runs over and over again forever
void loop() {
e(.)i // turn the LED
(1000) ; // wait fo
(.); // turn
(1000) ; // wait for a secon

1\ (HIGH is the voltage level)

by making the voltage LOW

2. Pulsa el botén Verificar.

Una barra de progreso de color verde avanza mientras el IDE comprueba las instrucciones. Como el programa no tiene ningdn
error de sintaxis, aparecera en la consola un mensaje en texto blanco que indicara que todo estéa bien y la palabra «Compilado»
en la cabecera de la consola.

Arduino/Genuino Uno en COME

Programa correctamente compilado.

En caso de que algo esté mal escrito, el texto del . e e . .
. B . a function-definition is not allowed here before '{ token Copiar mensajes de error
mensaje de la consola aparecera en naranja y

el cursor se colocara en el punto donde se ha de-
tectado el error.

Arduina/Genuino Uno en COMB
Programa con error de sintaxis.

3. Pulsa el botén Subir.

Una barra de progreso indica que el programa se esta cargando en la placa. Si la placa y el puerto estan bien configurados,
aparecera el mensaje «Subido» en la cabecera de la consola y el led integrado en la placa Arduino (senalado con una L mayus-
cula) parpadeara con una frecuencia de un segundo.

El led se enciende durante un segundo y se mantiene apagado durante otro segundo porque entre los paréntesis de la funcion
delay(1000) esté escrito el valor 1000, que son 1000 milisegundos, es decir, un segundo. Si cambias este valor a 2000, por
ejemplo, los tiempos de encendido y apagado cambian a dos segundos.

Arduino/Genuino Uno en CC

Programa correctamente cargado a la placa.

UnipAD 15. PROGRAMACION Y ROBOTICA 393

Practica 3. El semaforo para coches

En esta practica disenaremos una secuencia —

J6 Ted P I i |] st int buttonPin = 2; // Asignamos el pin2 al pulsador.
€ ledes. Fara €llo, analizaremos e programg % nst int ledPin = 13; // Asignamos el pinl3 al LED.
«Button» al que podemos acceder desde Archi- S| int buttonState = 0; // Declaramos la variable “buttonState”
vo > Ejemplos > 0.2 Digital > Button. Saull // que leerd el estado del pulsador.
Aprovecharemos este programa para diferen- void 0 1
ciar las tres partes principales de que consta g| pintode(ledPin, OUTEUT); ,
. . ® // Inicializamos el pin del LED como salida.

un programa en el IDE Arduino: cabecera, se- » pinMode (buttonPin, INPUT);
tup y loop. }
1. En la cabecera se definen las constantes y [T~ void O {

variables que requiere el programa. // Leemos el estado de valor del pulsador:

buttonState = digitalRead (buttonPin) ;

2. La funcion de configuracion void setup

contiene las instrucciones de configuracién // Comprueba si el pulsador estd siendo activado.

. —— // Si es asi, el valor de buttonState es HIGH:

de la placa, como, por ejemplo, qué pin o (buttonState == HIGH) {

es de entrada o de salida, a qué velocidad 1S // Enciende el LED:

funcionara el puerto serie, etc. Es la prime- } "'*@il/?i‘-“”‘-“ii*? (ledPin, HICH);

ra funcion en ejecutarse y solo lo hace una // sino es asi apaga el LED:

vez. digitalWrite (ledPin, LOW);

iy . L }

3. La funcion bucle, o void loop, contiene el }

codigo que se ejecutara ciclicamente e infi-
nitas veces (lectura de entradas, activacion
de salidas, etc.). Esta funcion es el nucleo
de todos los programas de Arduino y la que
realiza la mayor parte del trabajo.

Otras consideraciones importantes a las que prestar atencion a la hora de escribir el programa son las siguientes:

e Cada funcion delimita su contenido con dos llaves, una de apertura y otra de cierre « }». Si falta una de ellas, al compilar se
recibe un error de sintaxis.

e Después de declarar una variable o definir una accion se anade un punto y coma «».

e Si se quiere anadir un texto que sirva de guia, pero que no forma parte del codigo, este debera estar precedido de dos barras
inclinadas «//».

Crea un programa que simule la progresion de luces de un seméaforo para coches. Se necesitaran tres ledes: uno de color rojo,
otro amarillo y uno verde, ademas de tres resistencias de 220 (.

Realiza las siguientes conexiones con la placa desconectada del ordenador:

1. Alimentaremos el circuito con dos
cables: uno rojo, que ira desde el
pin de 5 V a la hilera inferior de la
protoboard, y otro negro, que ira del
pin GND (ground, o tierra) a la hilera R aaa iaeag NERSE i
superior.

2. Conectaremos con jumpers o cables-
los tres ledes con la pata mas lar-
gahacia la izquierda y, en la misma
columna de pines que esta pata, tres
cables dirigidos a los pines digitales
10, 11 y 12.

LR
LI
LI
RN
R R
"8 0
LR
L
LR
LR
I
LR
LI

[kt

=
2
a
c
b
=
o,

CIC
LI
LI
s s s
.- s e
LR
LI
e e
s

LR]
L]
L]
L]
(U O]

3. Conectaremos con las tres resisten-
cias la pata mas corta de los ledes
a la hilera superior de la banda de
alimentacion de la protoboard.

394 UNiDAD 15. PROGRAMACION Y ROBOTICA

> Actividad resuelta

Abre el IDE de Arduino e intenta disenar el codigo para hacer funcionar este circuito fijandote en las funciones utilizadas en el
ejemplo «Button». Cuando hayas terminado, verifica que todo esté correcto compiléandolo y, si es asi, conecta el cable USB a la
placa y carga el programa en ella.

Solucion

int red = 12;
int yellow = 11;
int green = 10;

void setup () {
pinMode (red, OUTPUT) ;
pinMode (yellow, OUTPUT) ;
pinMode (green, OUTPUT) ;

void loop () {

// apagar verde, enciende amarillo 3 segundos.
digitalWrite (green, LOW) ;

digitalWrite (yellow, HIGH);

delay (3000);

// apagar amarillo, enciende rojo 5 segundos.
digitalWrite (yellow, LOW) ;

digitalWrite (red, HIGH);

delay (5000);

// rojo y amarillo se enciende a la vez durante 2 segundos.
digitalWrite (yellow, HIGH);
delay (2000);

// apaga rojo y amarillo, enciende verde durante 3 segundos.
digitalWrite (yellow, LOW) ;

digitalWrite (red, LOW);

digitalWrite (green, HIGH);

delay (3000);

7 Actividades

8> Redisena el circuito y el programa del semaforo ana-
diendo dos ledes que representen un seméforo para pea-
tones. Si quieres hacerlo todavia méas preciso y real, haz
que el led verde de peatones parpadee antes de pasar a
rojo. Es tan solo una cuestion de jugar con los tiempos.
Analiza el programa que has creado y dibuja el diagrama
de flujo que corresponderia utilizando la simbologia ade-
cuada.

9> Escribe el codigo necesario para que una fila de cuatro
ledes se encienda y apague de manera consecutiva como
si de un ecualizador de sonido se tratara.

UNIDAD 15. PROGRAMACION Y ROBOTICA 395

Practica 4. El semaforo para coches y peatones con S4A

S4A (Scratch for Arduino) es un «intérprete», es decir, que no es necesario cargar el programa en la placa cada vez que introdu-
cimos una modificacion, sino que se actualiza y ejecuta constantemente, siempre que el ordenador esté conectado a la placa.
Ademas, utiliza bloques para el diseno del programa, lo que facilita mucho su manejo.

Puedes descargar el programa desde su pagina oficial en: http://s4a.cat/index_es.html

Para trabajar con S4A es necesario instalar un firmware en nuestra placa, que es el programa que hara posible la conexion perma-
nente entre la placa y el programa S4A.

Instalacion de firmware para S4A

Sigue los pasos que a continuacion indicamos:

1. Descarga el firmware «S4AFirmware16.ino» de S4A desde la seccion Descargas de la web oficial. Fijate en qué carpeta se des-
carga, pues vas a necesitar acceder a ella en el paso siguiente.

NOTA: En caso de que al pulsar en la palabra «aqui» el firmware no se descargue automaticamente, haz clic derecho con tu
ratén sobre la palabra y selecciona Guardar como.

2. Desde el IDE de Arduino ve a Archivo > Abrir y abre el firmware. Aparecera entonces un mensaje advirtiendo que la carpeta de
instalacion se va crear y mover. Acepta clicando en «OK».

3. Asegurate de que tu placa esta correctamente conectada y pulsa el botén Subir del IDE de Arduino para cargar el firmware en
la placa.

4. Inicia el programa S4A. Puede que aparezca el mensaje «Buscando placa», pero deberia desaparecer en unos segundos. A
partir de ese momento ya puedes empezar a programar.

La apariencia de S4A es muy similar a la de Scratch, ya que es una modificacion suya. Su manejo es muy intuitivo: tan solo tie-
nes que seleccionar las funciones y variables que vayas a utilizar y arrastrarlas al area central donde daras forma al programa.

En la imagen puedes ver la estructura basica del programa que haria funcionar el semaforo para coches.

Actividad .
g‘g,?,g::f,:gg{;ﬁgf;*f}; @& B Archivo Editar Ayuda

Amplia la capacidad de este programa anadiendo las fun- _

ciones necesarias para hacer funcionar un semaforo para Movimlarte

coches y otro para peatones de manera coordinada.

Apariencia Sensores

Las funciones que necesitaras para ello son estas: Sonido Operadores
o al presionar, para iniciar la ejecucion del programa, Lépiz Variables

e por siempre, para que lo contenido en él se repita cons-
tantemente,

e esperar n segundos, para controlar los tiempos. Es si-
milar a la funcion delay del IDE de Arduino. 7 .
digital 10 | encendido
o digital x apagado/encendido, para apagar y encender
los ledes conectados a los diferentes pines. x es el nu-
mero de pin cuyo elemento conectado queremos encen-

der o apagar.

digital 11 |apagado

digital 12 apagado

digital _10 | apagado
digital 11 | encendido
digital 12

RO}

‘ digital _10 | apagado

‘digital 11 japagado

‘digital 12 | encendido

396

UNIDAD 15. PROGRAMACION Y ROBOTICA

Practica 5. Abrir y cerrar una compuerta con un potenciometro

Un potenciometro es una resistencia variable. Para cambiar la resistencia hay que girar el mando del que viene provisto. Este
elemento debe conectarse a una entrada analdgica. Las lecturas de las entradas analdgicas dan valores entre O y 1023, donde
el valor O corresponde a una lectura de O V y el valor 1023, a una lectura de 5 V. Asi pues, una lectura de 512 corresponde a un

voltaje de 2,5 V.

En esta practica transformaremos la senal variable del potenciémetro en un nimero de grados para hacer girar la compuerta de

manera solidaria al giro del mando del potenciémetro. La compuerta obtendra el movimiento de un servomotor.

Estos son los pasos que debes seguir para escribir
el programa:

1.

o R 00

S

Incluir la libreria para el servomotor. Puedes se-

guir los pasos explicados en el apartado 3.4.

. Definir tres variables de tipo integer: _

i

e Una almacenara la posicion del potenciome-
tro cuyos valores van de O a 1023. Puedes
llamarla «pot».

LR R
DR R R

e En otra, que llamamos «val», almacenamos el
valor de la entrada analdgica.

e En la tercera, que denominamos «ang», alma-
cenamos el valor de lectura extrapolando la
posicion del potenciémetro a grados, es decir,
de 0 a 180°.

En el void setup indicamos que el servo esta conectado al pin 9 escribiendo: Servouno.attach(9);

En el void loop el programa leeréa la posicion del potenciometro con: val = analogRead(pot);

write(ang);
proceso con la funcion: delay(15);
olucion
<Servo.h>
Servo Servouno; //Declaramos que vamos a controlar un servo y lo llamamos Servouno.

int pot = 0; //Asignamos la variable para el potencidmetro.

int val; //Variable para almacenar la entrada analoga.

int ang; //Variable para almacenar valor de éangulo.

void ()

{

Servouno.attach (9); //Definimos que el servo ird conectado al pin 9.

}

void ()

{

val = analogRead (pot); //Lee el valor del potencidmetro (entre 0 y 1023).
ang = map(val, 0, 1023, 0, 180); //Traduce la lectura andloga (0, 1023) a grados

Asignamos a la variable val la lectura y la traducimos a grados con la funcion map: val = map(val, 0, 1023, O, 180);

Igualamos el valor resultante a la variable ang para que el servomotor tome la posicion correspondiente con: Servouno.

Para que el servo tenga tiempo para posicionarse y funcione sin saltos, anadiremos un pequeno tiempo de espera al final del

//(0°, 180°) y asigna el valor a la variable é&ngulo.

Servouno.write (ang) ; //Lleva el servo a la posicidn definida.

delay(15); //Espera un pequefio tiempo antes de volver a leer el valor.

}

UNIDAD 15. PROGRAMACION Y ROBOTICA

397

Practica 6. Luz nocturna

En esta practica vamos a construir un circuito que encendera una luz solo cuando sea de noche y, para ello, se requiere un led,

un LDR o sensor de luz y una resistencia de 10 k(2.

El circuito debe montarse como se muestra en la figura. Fijate en que el LDR esté en serie con la resistencia de 10 kS2.

N

Un LDR (Light Dependent Resistor) es una resistencia cuyo va-
lor es inversamente proporcional a la cantidad de luz que incide
sobre su superficie. Es decir, cuanto mayor sea la intensidad
de la luz, menor sera su resistencia y cuanta menos luz incida,
mayor sera su resistencia.

En esta practica también se va a utilizar la funcion Serial.
printin, que permite visualizar la cantidad de luz que esta reci-
biendo el LDR y mostrarlo en pantalla. Recuerda que para vi-
sualizar el monitor serie en el IDE de Arduino que mostrara los
valores recibidos del LDR se debe pulsar el boton Puerto serie.

Veamos qué debe contener el programa correspondiente.

1. Define tres variables, led, LDR y valorLDR, e indica a qué pin
estara conectado cada elemento.

2. En el void setup, define si los pines son de entrada o salida.
Indica que utilizaras el monitor serie e inicialo escribiendo
Serial.begin(9600).

3. En el void loop redactamos las siguientes acciones:

e Apagar el led con la funcion digitalWrite (elemento, es-
tado HIGH/LOW).

e Leer el pin del LDR y asignar el valor recibido a la varia-
ble valorLDR.

e Mostrar en el monitor serie el valorLDR: Serial.

printin(valorLDR).

Si quieres que en la pantalla del monitor serie el valor leido
aparezca precedido del texto “ValorLDR:” o cualquier otro tex-
to, anade la funcion Serial.print(“texto que desees mostrar”).

€D COMT (Arduine/Genuine Mega or Mega 2560) - o X
Send
984 Ly
968
980
986
954
939
937
954
10086
1006
980
980
924
1007
1007
1008
1007
1009
1008
1008
v
] Autoscroll Nolneendng .| 9600baud

Ventana del monitor serie con los valores recibidos por el sen-
sor LDR.

e Escribir un condicional que encienda el led solo cuando
el sensor de luz reciba un valor superior a 400, valor que
corresponde a una cantidad de luz baja.

Solucion

int led = 13;
int LDR = A2;
int valorLDR=0;

void () 1

pinMode (led, OUTPUT) ;
Serial .begin (9600) ;

void () |
digitalWrite (led, LOW);
valorLDR= analogRead (LDR) ;
Serial.print (“valorLDR:"”);
Serial.println(valorLDR) ;

(valorLDR>900) {
digitalWrite (led, HIGH);

digitalWrite (led, LOW);

398 UNiDAD 15. PROGRAMACION Y ROBOTICA

Practica 7. Sistema de ayuda al aparcamiento

En esta practica reproduciremos lo que ocurre en los coches provistos de un
sistema de ayuda al aparcamiento.

Para su montaje, se requiere de un sensor de ultrasonidos, un zumbador y un
led. Dispondremos estos elementos en la placa protoboard como se muestra
en la figura. Pon especial atencion al conectar los terminales del sensor de
ultrasonidos. Fijate en que cada uno de los pines tiene un cometido distinto
que viene indicado de la manera siguiente: VCC, TRIG, ECHO y GND.

Se utiliza el sensor de ultrasonidos para calcular la distancia existente entre el
sensor Yy un objeto. Para conseguirlo, el sensor envia una onda ultrasénica a
través del disparador o Trigger que rebota en el objeto e incide en el receptor
del sensor (Echo). Se calcula la distancia segun el tiempo que ha tardado en
volver la onda. Es un célculo sencillo que se integra en el programa.

Para construir el programa seguiremos los siguientes pasos: deara. La frecuencia a la que ambos funcionaran sera
. . roporcional a la distancia, de manera que pausa = dis-
1. Define los pines a los que vas a conectar el led, el zumbador P p_ e p
. N ! tancia x 100.
y los dos terminales del sensor ultrasonico (Trigger y Echo).
. L . . Solucion
2. Declara tres variables tipo integer para calcular la distancia:
e tiemporesp: almacena el tiempo que tarda el sonido en int trigPin = 12;
rebotar. int echoPin = 13;
int zumbador = 6;
e distancia: contiene el resultado del calculo de la distan- int led = 8;
cia correspondiente al tiempo de respuesta. int tiemporesp, distancia, pausa;
e pausa: su valor es proporcional a la distancia. Se emplea
para que el zumbador emita pitidos y el led parpadee con void O A
mayor o menor frecuencia en funcion de la distancia. Serial.begin(9600);
| | .1 . .) . pinMode (trigPin, OUTPUT) ;
3. En el void setup inicia el monitor serie y define si los senso- pinMode (echoPin, INPUT) ;
res son de entrada o salida. Como el Trigger es un emisor, pinMode (zumbador, OUTPUT) ;

(
(

este sera de salida, mientras que el Echo, al ser un recep- pinMode (led, OUTPUT);
tor, seré de entrada. }
4. En el void loop, emite un sonido desde Trigger, espera- void O
mos dos microsegundos y recibiremos el sonido rebotado digitalWrite (trigPin, LOW);
midiendo el tiempo que transcurre con las funciones si- delayMicroseconds (2);
guientes: digitalWrite(trigPin, LOW); delayMicroseconds(2); il?lti%‘”flte“%(ﬂ(’ig; HIGH) 7
A, . A) . L=l B = delayMicroseconds ;
dlgltaIerte(trlgPln., HIGH); digitalWrite(trigPin, LOW); delay digitalWrite (trigPin, LOW);
Microseconds(10); tiemporesp = pulseln(echoPin,HIGH) ;
5. Como la velocidad del sonido es de 343 m/s, se requiere distancia = tiemporesp / 2 / 29.1 ;
1/343 = O,OOIQQ:L segundos para refzorrer un metro, que, ex- (distancia >= 50 || distancia <= 1) {
presado en microsegundos por centimetro, son 29,1 us/cm.
La distancia a la que encuentra el objeto es la mitad de este }
valor porque el tiemporesp mide el tiempo que tarda el pulso {
enir y volver. Serial.print (distancia);
)) 2) Serial.println (™ cm”);
6. Escribe las funciones condicionales necesarias para que el }
programa haga lo siguiente: (distancia < 10){

pausa = distancia * 100;

e Siladistancia a la que se encuentra el objeto es mayor o digitalWrite (zumbador, HIGH):;
CalW ce 7 3 ’

igual que 50 cm (alcance maximo del sensor) o menor digitalWrite (led, HIGH);
o igual que 1 cm, en el monitor serie se mostrara «Objeto delay (pausa) ;
fuera de alcance». En caso contrario, el monitor serie digitalWrite (zumbador, LOW);
mostrara la distancia a la que se encuentra el objeto. digitalWrite(led, LOW);
delay (pausa);
e Si la distancia a la que se encuentra el objeto es menor }

que 10 cm, el zumbador emitira pitidos y el led parpa- }

UNIDAD 15. PROGRAMACION Y ROBOTICA

399

Practica 8. Contador con sensor LDR y pantalla LCD

En esta practica vamos a disenar un sistema que cuente las
personas que han entrado en una habitacion. Para ello se ne-
cesita un diodo laser emisor de luz, un sensor de luz LDR, que
recibira la luz del laser, y una pantalla LCD, que mostrara la
cantidad de veces que un objeto ha atravesado el haz de luz
de la barrera.

El diodo laser y el sensor LDR deberan estar enfrentados, de
modo que la luz del laser incida directamente sobre el LDR. El
LDR tomara un valor de resistencia cuando reciba luz y, cada
vez que este haz de luz sea interrumpido por algin elemento,
el valor de su resistencia variara. Esta variacion sera detecta-
da por el sistema y sumara una unidad al valor almacenado y
mostrado en la pantalla LCD.

En la imagen de la placa puedes ver como conectar los diferen-
tes elementos.

Para disenar el programa puedes seguir estos pasos:

1. Anade la libreria que permitira utilizar las funciones propias
de la pantalla LCD: #include <LiquidCrystal.h>

2. Define dos variables, contador y numaux, que seran ndme-
ros enteros y servirdn para almacenar los valores necesa-
rios para contar el nimero de veces que un objeto atraviesa
el haz de luz.

Define otras dos variables: sensorLDR, que recibira la in-
formacion del LDR, y valorLDR, que almacenara el valor de
LDR.

3. Indica a qué entradas estan conectados los pines de la pan-
talla LCD.

4. Para escribir el bloque setup investiga un poco y consigue
que la pantalla se inicie y muestre durante dos segundos
el texto «Hola, Fulanito» (siendo «Fulanito» tu nombre). Para
ello puedes utilizar las siguientes funciones:

Icd.begin (n.° de caracteres, n.° de filas), lcd.setCursor (x, y),
lcd.print (“texto”), delay y lcd.clear.

5. Finalmente, en el bloque void loop, escribe las funciones
necesarias para que cada vez que el valor recibido por la
LDR sea menor que 600, es decir, que el haz de luz se haya
interrumpido, la variable contador sume una unidad mas y
se muestre en la pantalla LCD.

Solucion

<LiguidCrystal.h> // Incluiye libreria

//Declaramos variables
int contador=0;

int numaux=0;

int sensorLDR = AQ;
int valorLDR = 0;

LigquidCrystal lcd (12, 11, 5, 4, 3, 2);
//Declara los pines que conectan la pantalla.

void () |
lcd.begin(l6, 2); //Inicia la pantalla.
led.setCursor (5, 0); //Sitta cursor en origen.
lcd.print (“Hola, Fulanito”); //Escribe el texto.
delay (2000); //Espera 2 segundos.
led.clear(); //Limpia la pantalla.

void) |

valorLDR = analogRead (sensorLDR) ;

// Lee.
lcd.setCursor (0, 0); //Posiciona en (0,0).
led.print (“Contador”); //Escribe.

lcd.setCursor (10, 1);
lcd.print (contador) ;
//Muestra en pantalla la variable contador.

//Posiciona en (10,1).

numaux=0; //Hace la variable auxnumero=0
(valorLDR<600) { //Entramos en el bucle
valorLDR = analogRead(sensorLDR); // Lee
(numaux==0){ // Entra en el if si numaux=0.
contador++; //RAumentamos en una unidad
numaux=1; //Para que solo aumente

}

400

UNIDAD 15. PROGRAMACION Y ROBOTICA

Practica 9. Programacion orientada a objetos con Processing

La programacion orientada a objetos se basa en la idea de crear unidades independientes que contengan los valores y datos que

van a manejar y las funciones con las que manipularlos.

Para comprender como funciona este tipo de programacion, deben definirse los siguientes conceptos:

e Objetos y clases.

Los objetos son las entidades con que se trabaja y la clase (class) la definicion de esos objetos. Podemos imaginar la clase
como un molde y los objetos, como cada copia particular generada mediante dicho molde.

Para la definicion de un objeto simple se utiliza, en primer lugar, el nombre de la clase y, a continuacion, las variables internas
o «propiedades» del objeto. Para crear copias del objeto, se utiliza una funcion inicial, que tendra el nombre de la clase, y se

asignaran los valores iniciales a sus propiedades.

class Ball { // Definimos la clase a la que llamaremos Ball.

int x,y;

Ball () {
x=10;
y=20;

}

}

// Definimos los dos parédmetros x e y de la clase Ball.

// Creamos una copia del objeto Ball y damos valor a x e Y.

e Métodos: son las acciones que pueden realizar los objetos, como, por ejemplo, dibujar formas, realizar calculos con los valores

que los definen, trasladarse por la pantalla, etc.

Una de las ventajas que ofrece Processing al trabajar con programacion orientada a objetos es que se pueden utilizar matrices.
Su uso permite crear copias de un objeto de manera sencilla, cada uno con cualidades diferentes: posicion, tamano, nimero de

patas, velocidad, color, etc.

Ejemplo 1
>

En el codigo siguiente se muestra un ejemplo disenado para dibujar 15 bolas
diferentes que se comportaran de manera diversa.

Ball A [];

int numBalls;

void setup () {

size (200,200);
smooth();

numBalls=15;

A= new Ball[numBalls];

for (int i = 0; i<numBalls ; i++){

A[i] = new Ball(int(random(100)) , int(random(100)));
}

}

void draw () |

fi11(0,0,100,1);
rect(0,0,width,height);

for (int i = 0; i<numBalls ; i++){
Al[i].calcula(); // o avanza, oO...
Af[i].dibuja();

}

}

funcién «avanzan».

Ejemplo 2
>

En este ejemplo se expone el cédigo para
dibujar una elipse con la funcion «dibuja»
y otro que hard moverse esa elipse con la

class Ball {
int x,y;

Ball ()
x=10;
y=20;

}

void dibuja () {
ellipse(x,vy,12,12);
}

void avanza () {
x = x+1;

}

En la web www.processing.org puedes encontrar muchos tutoriales y ejemplos de programas, asi como descargar el programa de

manera libre.

UNIDAD 15. PROGRAMACION Y ROBOTICA

401

Autoevaluacion

. La herramienta de programacion utilizada para traducir el
codigo fuente al ordenador es:

a) El editor de texto.
b) El intérprete.
c) El depurador.

. ¢Cudl de estos programas no permite programar por blo-
ques?

a) Bitbloq,
b) IDE de Arduino.
c) A4A.

. En un diagrama de flujo, los procesos en los que se debe
tomar una decision se representan con:

a) Un circulo.
b) Un rectangulo.
¢) Un rombo.

. ¢Cudl de estos elementos no se encuentra integrado en la
placa Arduino Uno?

a) Microprocesador.
b) Led de encendido.
¢) Sensor LDR.

. ¢COomo se llaman los elementos que permiten aumentar las
caracteristicas de una placa controladora?

a) Shields.
b) Actuadores.
¢) Conectores USB.

. ¢De qué manera se pueden alimentar la mayoria de las pla-
cas controladoras?

a) Via cable USB.
b) Alimentacion externa.
¢) Ambos.

. ¢Cudl es la corriente maxima de salida de cada uno de los
pines de una placa Arduino Uno?

a) 20 mA.
b) 40 mA.
c) 200 mA.

. Los pines capaces de enviar o recibir dos unicos valores
correspondientes a O y 5 V son pines:

a) De potencia.
b) Analdgicos.

c¢) Digitales.

qQ.

10.

11.

12,

13.

14.

15.

16.

Para montar un circuito con varios ledes conectados en serie
con resistencias, se precisa de una:

a) Placa protoboard.
b) Entrada analdgica.
¢) Tarjeta de expansion.

¢;Cual de estos sensores es sensible a la radiacién de infra-
rrojos?

a) LDR.
b) PIR.
c) NTC.

¢Cual de estos elementos puede comportarse como sensor
o actuador?

a) Sensor de sonidos.
b) Sensor de infrarrojos.
c¢) Acelerémetro.

¢Cual de estos actuadores requiere alimentacion adicional
para conectarse a una placa Arduino Uno?

a) Led.

b) Motor CC.

¢) Servomotor.

¢Qué tipo de dato puede almacenar el nimero -199?
a) Byte.

b) Long.

¢) Booleano.

¢;Cual de estas funciones es un bucle?
a) Serialprintin.

b) For.

c) If.

Cuél de estas estructuras de programacion incluye de
manera intrinseca el establecimiento de una condiciéon?

a) Secuenciales.
b) Condicionales.
¢) Repetitivas.

¢Cual de estos elementos no puede ser utilizado para abrir y
cerrar una compuerta?

a) Potenciémetro
b) LDR.
c) LED.

09T A agT

‘QyT ‘€T ‘aZT ‘eTT ‘Q0T ‘eb ‘08 ‘qL ‘09 ‘BG ‘Op ‘O¢ ‘qg ‘qT :sauolonjos

402

UNIDAD 15. PROGRAMACION Y ROBOTICA

Actividades finales

Para repasar

1.

10.

11.
12,
13.

14.

15.

Elabora una lista de las herramientas de programacion estu-
diadas e indica su utilidad.

. ¢Qué tipo de herramienta es S4A y por qué?

. Explica el significado de los siguientes acrénimos: IDE, GUI,

PIR, LDR, LED, NTC y PWM.

. Dibuja una placa controladora e indica las partes mas impor-

tantes y su utilidad.

. ¢Incluye una placa Arduino Uno conexion Bluetooth? ¢Es

posible dotar a una placa Arduino Uno de conexion Blue-
tooth? ¢C6mo?

. ¢Cuantos pines digitales y analdgicos incluye una placa

Arduino Uno?

. ¢Cudles son los pines que permiten transmitir la salida de

una senal analdgica?

. Enumera todos los elementos fisicos necesarios para simu-

lar un semaforo de coches.

. Haz una lista de los sensores y actuadores estudiados en

esta unidad e indica su utilidad.

¢Qué tipo de variable consideras méas adecuada para definir
los siguientes valores?

Valor ‘ Tipo

-255

201

257

1,3,5,7,9

5.67

True

3100

«fn

sacapuntas

¢Qué es la programacion estructurada y para qué sirve?
¢Qué entendemos por estructuras de control?

JQué elemento de control necesita utilizar un incrementa-
dor?

Explica con tus propias palabras qué contienen las secciones
cabecera, void setup y void loop de un programa escrito en la
IDE de Arduino.

¢Cual es la manera mas sencilla de instalar una libreria?

Para afianzar

16.

17.

18.

19.

20.

Explica en qué se diferencian las senales digitales de las
anal6gicas.

Indica a qué tipo de pin (digital o analdgico) deben conec-
tarse los terminales de los siguientes elementos y si seran
de entrada (E), salida (S) o ambos: LED, LDR, sensor de proxi-
midad ultrasénico, potenciometro, servomotor y zumbador.

Indica la utilidad de las siguientes funciones:

e pinMode e include

o digitalRead e analogRead

o digitalWrite e Serial.print

e delay e Serial.printin

e map e define

e Serial.begin e pulseln

Escribe un programa capaz de contar el nimero de perso-

nas que entran y salen de una habitacién, con una puerta
de entrada y otra de salida, de manera que, al llegar a un
maximo de 30, cierre la de entrada y permanezca cerrada
hasta que el nimero de personas dentro de la habitacion sea
inferior o igual a 30.

Interpreta y describe qué es lo que ocurre en estos progra-
mas:

a)

const int potenciometroPin = AQ;

const int ledPin = 13;
const int umbral = 400;
void 0 |

pinMode (ledPin, OUTPUT) ;

Serial.begin(9600);

void 0 |

int analogValue = analogRead(analogPin);

(analogValue > umbral) {
digitalWrite (ledPin, HIGH) ;

{
digitalWrite (ledPin, LOW) ;

}

Serial.println(analogValue) ;
delay (1) ;

UnipAD 15. PROGRAMACION Y ROBOTICA 403

b) Para profundizar
const int ledPin = 13; 21. Existen muchos programas para simular circuitos; Fritzing,
const int knockSensor = A0Q; en particular, resulta muy adecuado para el disefo de circui-
const int threshold = 100; tos con placas Arduino. Su manejo es muy intuitivo y puedes
int sensorReading = 0;

descargarlo en http://fritzing.org/download/.
int ledState = LOW; 9 p// 9 g/ /

A continuacion, te proponemos que, para los proyectos pro-

void 0 A puestos, realices lo siguiente:
pinMode (ledPin, OUTPUT) ;
Serial.begin (9600) ; a) Dibuja el diagrama de flujo correspondiente al proceso
} propuesto.
void 0O 1 b) Escribe una lista de los componentes electrénicos necesa-
sensorReading = analogRead (knockSensor) ; rios para construirlo.
(sensorReading >= threshold) ({

¢) Representa el circuito con todos sus componentes conec-

ledState = !ledState; . -
ledState) ; tados utilizando el programa Fritzing.

digitalWrite (ledPin,
Serial.println (“Knock!”);
}
delay (100);

d) Escribe el programa en el IDE de Arduino, cérgalo en la
placa y comprueba si funciona.

o 1. Monitorizacion de temperatura y humedad.
En este proyecto debes utilizar la placa Arduino para mos-
trar en el monitor serie del IDE de Arduino la temperatura

y la humedad del ambiente.

<Servo.h>
<Arduino.h>
Servo barrapaso;

‘ 2. Compuerta que se abre al llamar tres veces.
int ledverderd = 13;

int ledamarmar = 12; Utiliza un actuador que sea capaz de abrir y cerrar una
int ledrojoj = 11; pequefia puerta, de manera que, cuando reciba un soni-
do tres veces seguidas, se abra, espere unos segundos
, después, se cierre. Si quieres completar esta practica,

pinMode (ledverderd, OUTPUT); Y d P Aadi a detect p'| P bi
pinMode (ledamarmar, OUTPUT) ; puedes anadir un sensor que detecte si la persona u obje-

pinMode (ledrojoj, OUTPUT); to ha atravesado la puerta para proceder a cerrarla.

void O A

barrapaso.attach(9); 3

) Sistema de seguridad de puerta de frigorifico.

Reproduce un sistema automatico que detecte si la puerta
void Loop O o de un frigorifico esta abierta o no, de manera que se en-
digitalWrite (ledroj, HIGH); cienda una luz cuando estéa abierta y que, si se mantiene,
barrapaso.write (10); abierta méas de 15 segundos, suene un pitido intermitente

delay (3000); hast rrar
digitalWrite (ledroj, LOW); asta cerrarse.

digitalWrite (ledamar, HIGH); 4. Pantalla LCD indicadora de grados.

delay (1000);

digitalWrite (ledamar, LOW); Disefia un sistema que muestre en una pantalla LCD la
delay(1000); posicion en grados de un mando que gire en ambas di-
digitalWrite (ledamar, HIGH); recciones. Un LCD (Liquid Crystal Display) es una pantalla

delay (1000);

digitalWrite (ledamar, LOW);
delay (1000);

digitalWrite (ledamar, HIGH); Sera necesario importar una libreria especifica para la
delay(1000); pantalla LCD. Recuerda que entre sus archivos podras en-
digitalWrite (ledamar, LOW); contrar funciones especificas e instrucciones para utilizar-
ji;zﬁiggle (ledverd, Hrom); las. Las funciones que necesitarés son las siguientes: lcd.
barrapaso.write (100) ; bggln para inicializar el display, ch.setCu_rsor para p93|-
delay (5000) ; cionar el cursor en una coordenada determinada (lo I6gico
digitalWrite (ledverd, LOW); es comenzar en X = 0, y=1) y led.print o lcd.printin para
} mostrar en el display nimeros enteros.

formada por un nimero de pixeles de color o monocromos
colocados delante de una fuente de luz o reflectora.

